Sunday 10 November 2024

|| 10th November 2024 || MTech Advanced Maths || Dr Sonendra Gupta ||


|| M.Tech Advanced Mathematics Class | In-depth Concepts and Problem Solving || Welcome to our M.Tech Advanced Mathematics class! In this video, we dive deep into advanced mathematical concepts, theories, and problem-solving techniques essential for M.Tech students. Whether you're looking to strengthen your understanding or prepare for exams, this session is designed to help you excel. Don't forget to like, subscribe, and join our WhatsApp group for updates and discussions! ๐Ÿ‘‰ Join our WhatsApp Group: https://chat.whatsapp.com/BDXTqDiR2HS8y4It1J7CDQ เคนเคฎाเคฐी เคเคฎ.เคŸेเค• เคเคกเคตांเคธ्เคก เคฎैเคฅเคฎैเคŸिเค•्เคธ เค•्เคฒाเคธ เคฎें เค†เคชเค•ा เคธ्เคตाเค—เคค เคนै! เค‡เคธ เคตीเคกिเคฏो เคฎें, เคนเคฎ เคเคกเคตांเคธ्เคก เค—เคฃिเคคीเคฏ เค•ॉเคจ्เคธेเคช्เคŸ्เคธ, เคฅिเคฏोเคฐीเคœ, เค”เคฐ เคช्เคฐॉเคฌ्เคฒเคฎ-เคธॉเคฒ्เคตिंเค— เคคเค•เคจीเค•ों เค•ो เค—เคนเคฐाเคˆ เคธे เคธเคฎเคाเคคे เคนैं, เคœो เคเคฎ.เคŸेเค• เค›ाเคค्เคฐों เค•े เคฒिเค เคฎเคนเคค्เคตเคชूเคฐ्เคฃ เคนैं। เค…เค—เคฐ เค†เคช เค…เคชเคจी เคธเคฎเค เค•ो เคฎเคœเคฌूเคค เค•เคฐเคจा เคšाเคนเคคे เคนैं เคฏा เคชเคฐीเค•्เคทा เค•ी เคคैเคฏाเคฐी เค•เคฐ เคฐเคนे เคนैं, เคคो เคฏเคน เคธेเคถเคจ เค†เคชเค•े เคฒिเค เคนै। เคตीเคกिเคฏो เค•ो เคฒाเค‡เค•, เคธเคฌ्เคธเค•्เคฐाเค‡เคฌ เค•เคฐเคจा เคจ เคญूเคฒें เค”เคฐ เคนเคฎाเคฐे เคต्เคนाเคŸ्เคธเคเคช เค—्เคฐुเคช เคธे เคœुเคก़ें!

#M.Tech Advanced Mathematics
#Advanced Mathematics for Engineers
#Mathematics for M.Tech Students
#Mathematical Problem Solving Techniques
#Engineering Mathematics Class
#Advanced Math Theories
#Math Tutorials for M.Tech
#M.Tech Mathematics YouTube
#Higher Mathematics Concepts

Saturday 9 November 2024

|| Mastering the Echelon Form of a Matrix || Lecture 4 || Dr. Sonendra Gupta ||


Master the Echelon Form | Dr. Sonendra Gupta

What is the Echelon Form, and how does it simplify solving linear equations? Join Dr. Sonendra Gupta in this comprehensive tutorial, where he explains why the Echelon Form of a matrix is essential and how to achieve it. This video is a must-watch for students and math enthusiasts aiming to gain expertise in linear algebra. Learn the concepts in clear, simple language and elevate your math skills to the next level!"

#EchelonForm #Matrix #LinearAlgebra #DrSonendraGupta #MatrixSolutions #MathTutorial

เค‡เคถेเคฒॉเคจ เคซॉเคฐ्เคฎ เค•ा เคฎाเคธ्เคŸเคฐเค•्เคฒाเคธ | เคกॉ. เคธोเคจेंเคฆ्เคฐ เค—ुเคช्เคคा

เค‡เคถेเคฒॉเคจ เคซॉเคฐ्เคฎ เค•्เคฏा เคนै เค”เคฐ เคฏเคน เคฐेเค–ीเคฏ เคธเคฎीเค•เคฐเคฃों เค•ो เค•ैเคธे เค†เคธाเคจ เคฌเคจाเคคा เคนै? เคกॉ. เคธोเคจेंเคฆ्เคฐ เค—ुเคช्เคคा เค•े เค‡เคธ เค—เคนเคจ เคŸ्เคฏूเคŸोเคฐिเคฏเคฒ เคฎें เคœाเคจें เค•ि เคฎैเคŸ्เคฐिเค•्เคธ เค•ा เค‡เคถेเคฒॉเคจ เคซॉเคฐ्เคฎ เค•्เคฏों เคฎเคนเคค्เคตเคชूเคฐ्เคฃ เคนै เค”เคฐ เค‡เคธे เค•ैเคธे เคนाเคธिเคฒ เค•เคฐें। เคฏเคน เคตीเคกिเคฏो เค‰เคจ เค›ाเคค्เคฐों เค”เคฐ เค—เคฃिเคค เคช्เคฐेเคฎिเคฏों เค•े เคฒिเค เคเค• เคœเคฐूเคฐी เค—ाเค‡เคก เคนै เคœो เคฐेเค–ीเคฏ เคฌीเคœเค—เคฃिเคค เคฎें เคตिเคถेเคทเคœ्เคžเคคा เคชाเคจा เคšाเคนเคคे เคนैं। เค‡เคธ เคœाเคจเค•ाเคฐी เค•ो เค†เคธाเคจ เคญाเคทा เคฎें เคธเคฎเคें เค”เคฐ เค…เคชเคจी เค—เคฃिเคค เค•ी เค•्เคทเคฎเคคाเค“ं เค•ो เค…เค—เคฒे เคธ्เคคเคฐ เคชเคฐ เคฒे เคœाเคं!"

#เค‡เคถेเคฒॉเคจ_เคซॉเคฐ्เคฎ #เคฎैเคŸ्เคฐिเค•्เคธ #เคฐेเค–ीเคฏ_เคฌीเคœเค—เคฃिเคค #DrSonendraGupta #เคฎैเคŸ्เคฐिเค•्เคธ_เคธॉเคฒ्เคฏूเคถเคจ #เค—เคฃिเคค_เคŸ्เคฏूเคŸोเคฐिเคฏเคฒ

Friday 8 November 2024

|| Mastering the Echelon Form of a Matrix || Lecture 3 || Dr. Sonendra Gupta ||


Master the Echelon Form | Dr. Sonendra Gupta

What is the Echelon Form, and how does it simplify solving linear equations? Join Dr. Sonendra Gupta in this comprehensive tutorial, where he explains why the Echelon Form of a matrix is essential and how to achieve it. This video is a must-watch for students and math enthusiasts aiming to gain expertise in linear algebra. Learn the concepts in clear, simple language and elevate your math skills to the next level!"

#EchelonForm #Matrix #LinearAlgebra #DrSonendraGupta #MatrixSolutions #MathTutorial

เค‡เคถेเคฒॉเคจ เคซॉเคฐ्เคฎ เค•ा เคฎाเคธ्เคŸเคฐเค•्เคฒाเคธ | เคกॉ. เคธोเคจेंเคฆ्เคฐ เค—ुเคช्เคคा

เค‡เคถेเคฒॉเคจ เคซॉเคฐ्เคฎ เค•्เคฏा เคนै เค”เคฐ เคฏเคน เคฐेเค–ीเคฏ เคธเคฎीเค•เคฐเคฃों เค•ो เค•ैเคธे เค†เคธाเคจ เคฌเคจाเคคा เคนै? เคกॉ. เคธोเคจेंเคฆ्เคฐ เค—ुเคช्เคคा เค•े เค‡เคธ เค—เคนเคจ เคŸ्เคฏूเคŸोเคฐिเคฏเคฒ เคฎें เคœाเคจें เค•ि เคฎैเคŸ्เคฐिเค•्เคธ เค•ा เค‡เคถेเคฒॉเคจ เคซॉเคฐ्เคฎ เค•्เคฏों เคฎเคนเคค्เคตเคชूเคฐ्เคฃ เคนै เค”เคฐ เค‡เคธे เค•ैเคธे เคนाเคธिเคฒ เค•เคฐें। เคฏเคน เคตीเคกिเคฏो เค‰เคจ เค›ाเคค्เคฐों เค”เคฐ เค—เคฃिเคค เคช्เคฐेเคฎिเคฏों เค•े เคฒिเค เคเค• เคœเคฐूเคฐी เค—ाเค‡เคก เคนै เคœो เคฐेเค–ीเคฏ เคฌीเคœเค—เคฃिเคค เคฎें เคตिเคถेเคทเคœ्เคžเคคा เคชाเคจा เคšाเคนเคคे เคนैं। เค‡เคธ เคœाเคจเค•ाเคฐी เค•ो เค†เคธाเคจ เคญाเคทा เคฎें เคธเคฎเคें เค”เคฐ เค…เคชเคจी เค—เคฃिเคค เค•ी เค•्เคทเคฎเคคाเค“ं เค•ो เค…เค—เคฒे เคธ्เคคเคฐ เคชเคฐ เคฒे เคœाเคं!"

#เค‡เคถेเคฒॉเคจ_เคซॉเคฐ्เคฎ #เคฎैเคŸ्เคฐिเค•्เคธ #เคฐेเค–ीเคฏ_เคฌीเคœเค—เคฃिเคค #DrSonendraGupta #เคฎैเคŸ्เคฐिเค•्เคธ_เคธॉเคฒ्เคฏूเคถเคจ #เค—เคฃिเคค_เคŸ्เคฏूเคŸोเคฐिเคฏเคฒ

Thursday 7 November 2024

| Mastering the Echelon Form of a Matrix | Dr. Sonendra Gupta |

Master the Echelon Form | Dr. Sonendra Gupta

What is the Echelon Form, and how does it simplify solving linear equations? Join Dr. Sonendra Gupta in this comprehensive tutorial, where he explains why the Echelon Form of a matrix is essential and how to achieve it. This video is a must-watch for students and math enthusiasts aiming to gain expertise in linear algebra. Learn the concepts in clear, simple language and elevate your math skills to the next level!"

#EchelonForm #Matrix #LinearAlgebra #DrSonendraGupta #MatrixSolutions #MathTutorial

เค‡เคถेเคฒॉเคจ เคซॉเคฐ्เคฎ เค•ा เคฎाเคธ्เคŸเคฐเค•्เคฒाเคธ | เคกॉ. เคธोเคจेंเคฆ्เคฐ เค—ुเคช्เคคा

เค‡เคถेเคฒॉเคจ เคซॉเคฐ्เคฎ เค•्เคฏा เคนै เค”เคฐ เคฏเคน เคฐेเค–ीเคฏ เคธเคฎीเค•เคฐเคฃों เค•ो เค•ैเคธे เค†เคธाเคจ เคฌเคจाเคคा เคนै? เคกॉ. เคธोเคจेंเคฆ्เคฐ เค—ुเคช्เคคा เค•े เค‡เคธ เค—เคนเคจ เคŸ्เคฏूเคŸोเคฐिเคฏเคฒ เคฎें เคœाเคจें เค•ि เคฎैเคŸ्เคฐिเค•्เคธ เค•ा เค‡เคถेเคฒॉเคจ เคซॉเคฐ्เคฎ เค•्เคฏों เคฎเคนเคค्เคตเคชूเคฐ्เคฃ เคนै เค”เคฐ เค‡เคธे เค•ैเคธे เคนाเคธिเคฒ เค•เคฐें। เคฏเคน เคตीเคกिเคฏो เค‰เคจ เค›ाเคค्เคฐों เค”เคฐ เค—เคฃिเคค เคช्เคฐेเคฎिเคฏों เค•े เคฒिเค เคเค• เคœเคฐूเคฐी เค—ाเค‡เคก เคนै เคœो เคฐेเค–ीเคฏ เคฌीเคœเค—เคฃिเคค เคฎें เคตिเคถेเคทเคœ्เคžเคคा เคชाเคจा เคšाเคนเคคे เคนैं। เค‡เคธ เคœाเคจเค•ाเคฐी เค•ो เค†เคธाเคจ เคญाเคทा เคฎें เคธเคฎเคें เค”เคฐ เค…เคชเคจी เค—เคฃिเคค เค•ी เค•्เคทเคฎเคคाเค“ं เค•ो เค…เค—เคฒे เคธ्เคคเคฐ เคชเคฐ เคฒे เคœाเคं!"

#เค‡เคถेเคฒॉเคจ_เคซॉเคฐ्เคฎ #เคฎैเคŸ्เคฐिเค•्เคธ #เคฐेเค–ीเคฏ_เคฌीเคœเค—เคฃिเคค #DrSonendraGupta #เคฎैเคŸ्เคฐिเค•्เคธ_เคธॉเคฒ्เคฏूเคถเคจ #เค—เคฃिเคค_เคŸ्เคฏूเคŸोเคฐिเคฏเคฒ

Wednesday 25 September 2024

IPS AIML AL302 [CO's, CO-PO Mapping, Justification, Unit Outcomes]

Introduction to Probability and Statistics (AIML) AL 302

Program Outcomes [PO's]

Course Outcomes [CO's]

CO-PO Mapping

Mapping Justification

Unit Outcomes

Programme Outcomes (POs)

 

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, reviewer search literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3.  Design/development of solutions: Design solutions for complex engineering problems and design system components   or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4.   Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5.    Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex Engineering   activities with an understanding of the limitations.

6.    The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7.  Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8.   Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices.

9.    Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12.   Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.


Course Outcomes (COs)

Course Name: Introduction to Probability and Statistics – III (AL302)

Year of Study:  2024-25 (III Semester) 

CO1

Understand and apply basic concepts of probability, including probability spaces, conditional probability, independence, and the characteristics of discrete random variables. 

CO2

Analyze and interpret continuous probability distributions, including understanding and application of distribution functions and densities such as normal, exponential, and gamma. 

CO3

Understand and evaluate bivariate distributions and their properties, including conditional densities and the use of Bayes' rule. 

CO4

Apply statistical concepts to measure central tendency, analyze distributions, and perform correlation and regression analysis, including rank correlation. 

CO5

Use statistical methods, such as curve fitting and tests of significance, to solve practical problems involving large sample sizes. 

CO6

Conduct hypothesis testing and analyze small samples using tests such as the Chi-square test for goodness of fit, independence of attributes, and other statistical methods. 

 CO vs. PO Mapping

 CO/POs

PO1

PO2

PO3

PO4

PO5

PO6

PO7

PO8

PO9

PO10

PO11

PO12

CO1

3

3

2

2

2

1

-

-

-

1

-

2

CO2

3

3

2

3

2

1

-

-

-

1

-

2

CO3

2

3

2

3

2

1

-

-

-

1

-

2

CO4

2

3

3

2

3

1

-

-

1

2

-

2

CO5

2

3

2

3

3

2

-

-

2

2

-

2

CO6

2

3

2

3

3

2

-

2

1

2

1

3

Average

2.33

3

2.17

2.67

2.5

1.33

-

2

0.67

1.5

1

2.17















































Mathematics-I [CO's, CO-PO Mapping, Justification, Unit Outcomes]

 Mathematics-I

Program Outcomes [PO's]

Course Outcomes [CO's]

CO-PO Mapping

Mapping Justification

Unit Outcomes


Programme Outcomes (POs)

 

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, reviewer search literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3.  Design/development of solutions: Design solutions for complex engineering problems and design system components   or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4.   Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5.    Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex Engineering   activities with an understanding of the limitations.

6.    The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7.  Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8.   Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices.

9.    Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12.   Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course Outcomes (CO’s)

CO1

Apply fundamental theorems of calculus in solving Engineering. problems

CO2

Evaluate definite integrals, apply Beta and Gamma functions, and utilize multiple integrals to calculate areas and volumes in various applications.

CO3

Analyze the convergence of sequences and series and apply Fourier series to represent functions.

CO4

Understand and apply concepts of vector spaces, subspaces, linear independence, and basis in the context of linear transformations.

CO5

Solve systems of linear equations, determine the rank of matrices, compute eigenvalues and eigenvectors, and apply the Cayley-Hamilton theorem in matrix theory.


CO vs. PO Mapping

 

PO1

PO2

PO3

PO4

PO5

PO6

PO7

PO8

PO9

PO10

PO11

PO12

CO1

3

3

3

2

2

1

2

1

-

-

-

-

CO2

3

3

3

3

2

1

2

1

-

-

-

-

CO3

3

3

2

2

1

1

1

1

-

-

-

-

CO4

3

3

3

3

3

-

2

1

-

-

-

-

CO5

3

3

3

3

2

-

2

1

-

-

-

-

Average

3

3

2.8

2.6

2

1

1.8

1

-

-

-

-



JUSTIFICATION OF CO’S and PO’S Correlation

CO-PO

Correlation level

Justification

CO1-PO1

3

Fundamental theorems of calculus are crucial for the mathematical foundation in engineering disciplines.

CO1-PO2

3

Calculus is vital for solving engineering problems involving rates of change and motion, strongly aligning with PO2

CO1 -PO3

3

The ability to apply calculus in engineering scenarios supports the creation of models and simulations, which are crucial in design and development.

CO1 -PO4

2

Calculus enables the investigation and exploration of engineering phenomena through differentiation and integration, supporting research and experimental analysis.

CO1-PO5

2

Understanding calculus supports the use of modern engineering tools, particularly those that require mathematical input or calculations.

CO1-PO6

1

Although less directly aligned, fundamental knowledge of calculus can indirectly support understanding the societal impacts of engineering solutions.

CO1-PO7

2

Calculus helps in modeling environmental systems and understanding the sustainability of solutions, although the alignment is moderate.

CO1-PO8

1

Ethical considerations in engineering might involve problem-solving scenarios where calculus is applied, although this is a minimal alignment.

CO1-PO9

-

No link in CO1-PO9 is required.

CO1-PO10

-

No link in CO1-PO10 is required.

CO1-PO11

-

No link in CO1-PO11 is required.

CO1-PO12

-

No link in CO1-PO12 is required.

CO2-PO1

3

Mastery of integral calculus and special functions like Beta and Gamma is fundamental to advanced engineering mathematics, aligning strongly with PO1.

CO2-PO2

3

Integral calculus is critical in analyzing continuous systems and phenomena, contributing significantly to PO2.

CO2-PO3

3

The application of integral calculus in series and function analysis is vital in developing mathematical models for engineering problems.

CO2-PO4

3

Integral calculus, especially in evaluating complex integrals and series, is used in investigating engineering problems and research.

CO2-PO5

2

Integral calculus is essential for understanding and utilizing computational tools that involve mathematical computations, which supports PO5.

CO2-PO6

1

Integral calculus can be used to address societal challenges, particularly in areas like economics and environmental modeling.

CO2-PO7

2

Integral calculus plays a role in modeling environmental systems and assessing sustainability, justifying its alignment with PO7.

CO2-PO8

1

Similar to CO1, the ethical application of mathematical solutions may have a minimal but relevant connection.

CO2-PO9

-

No link in CO1-PO9 is required.

CO2-PO10

-

No link in CO1-PO10 is required.

CO2-PO11

-

No link in CO1-PO11 is required.

CO2-PO12

-

No link in CO1-PO12 is required.

CO3-PO1

3

 

Convergence and Fourier series are fundamental concepts in many branches of engineering, making a strong case for PO1 alignment.

CO3-PO2

 

3

The ability to determine the convergence of series and apply Fourier series is essential in the analysis of signals, vibrations, and other engineering systems.

CO3-PO3

2

Fourier series are crucial in developing solutions related to signal processing, heat transfer, and other fields, aligning with PO3.

CO3-PO4

2

Understanding convergence and applying Fourier series is key in investigations involving periodic functions and waveforms, supporting PO4.

CO3-PO5

1

The knowledge of series and Fourier transforms is important in using tools for signal processing and system analysis, hence aligned with PO5.

CO3-PO6

1

While this connection is less direct, understanding the behavior of sequences and series could contribute to broader societal applications.

CO3-PO7

1

Fourier analysis can be used in environmental modeling and signal analysis in sustainable systems, providing some alignment.

CO3-PO8

1

Although Fourier series and convergence may not directly relate to ethics, their correct application is crucial in the integrity of engineering solutions.

CO3-PO9

-

No link in CO1-PO9 is required.

CO3-PO10

-

No link in CO1-PO10 is required.

CO3-PO11

-

No link in CO1-PO11 is required.

CO3-PO12

-

No link in CO1-PO12 is required.

CO4-PO1

3

Vector spaces and multivariable functions are core components of engineering mathematics, aligning strongly with foundational engineering knowledge (PO1).

CO4-PO2

3

Analyzing vector spaces and multivariable functions is critical in solving complex engineering problems, justifying the strong alignment with PO2.

CO4 -PO3

3

These concepts are essential in designing systems involving multiple variables, such as in control systems, mechanics, and electronics.

CO4 -PO4

3

Understanding vector spaces aids in exploring multi-dimensional problems, essential for research and advanced investigations in engineering (PO4).

CO4-PO5

3

Knowledge of vector spaces is crucial in many engineering tools that perform vector operations, supporting PO5.

CO4-PO6

-

No link in CO1-PO6 is required

CO4-PO7

2

The application of multivariable calculus and vector analysis in environmental systems justifies alignment with PO7.

CO4-PO8

2

The connection here is minimal, but correct application and interpretation of vector spaces can have ethical implications in certain engineering contexts.

CO4-PO9

-

No link in CO1-PO9 is required.

CO4-PO10

-

No link in CO1-PO10 is required.

CO4-PO11

-

No link in CO1-PO11 is required.

CO4-PO12

-

No link in CO1-PO12 is required.

CO5-PO1

3

Matrices are fundamental in engineering for representing and solving linear systems, justifying a strong alignment with PO1.

CO5-PO2

 

3

The ability to apply matrices in problem-solving is crucial for analyzing and interpreting engineering data, aligning well with PO2.

CO5-PO3

3

Matrix operations are essential in designing algorithms and systems, particularly in control theory, signal processing, and structural analysis (PO3).

CO5-PO4

3

Matrices are used extensively in modeling and simulation, supporting investigations into engineering systems (PO4).

CO5-PO5

2

Many engineering tools rely on matrix operations, particularly in computational simulations and analysis, aligning well with PO5.

CO5-PO6

-

 

CO5-PO7

1

Matrices can be applied in modeling environmental systems, contributing to sustainable design practices, supporting PO7.

CO5-PO8

1

The ethical use of matrices in engineering calculations is important, though the connection is minimal.

CO5-PO9

-

No link in CO1-PO9 is required.

CO5-PO10

-

No link in CO1-PO10 is required.

CO5-PO11

-

No link in CO1-PO11 is required.

CO5-PO12

-

No link in CO1-PO12 is required.

Unit-1 Outcomes (UO’s)

UO1

Students will be able to understand the geometric and algebraic significance of Rolle’s theorem and the Mean Value Theorem and apply these concepts to solve related problems.

UO2

Students will learn to expand functions in terms of series using Maclaurin’s and Taylor’s theorems for one variable and apply Taylor’s theorem for functions of two variables.

UO3

Students will be able to differentiate functions of several variables using partial differentiation.

UO4

Students will learn methods to find the maxima and minima of functions of two and three variables, including the use of Lagrange’s multipliers.

Unit-2 Outcomes (UO’s)

UO1

Students will understand the concept of definite integrals as limits of sums and apply this understanding to evaluate series.

UO2

Students will learn the properties of Beta and Gamma functions and apply them to solve related problems.

UO3

Students will apply definite integrals to compute surface areas and volumes of solids of revolution.

UO4

Students will be proficient in performing multiple integrations, changing the order of integration, and applying these techniques to calculate areas and volumes.


Unit-3 Outcomes (UO’s)

UO1

Students will understand the criteria for the convergence of sequences and series and apply various tests for convergence.

UO2

Students will develop skills in working with power series and Taylor series for exponential, trigonometric, and logarithmic functions.

UO3

Students will learn to expand functions as Fourier series, including half-range sine and cosine series, and understand and apply Parseval’s theorem.



Unit-4 Outcomes (UO’s)

UO1

Students will gain a deep understanding of vector spaces, including the concepts of vector subspaces, linear combinations, and basis.

UO2

Students will learn to identify linearly dependent and independent sets of vectors.

UO3

Students will learn to apply linear transformations and understand their properties and significance in vector spaces.


Unit-5 Outcomes (UO’s)

UO1

Students will learn to calculate the rank of a matrix and apply it to determine the solvability of linear systems.

UO2

Students will be proficient in solving simultaneous linear equations using elementary transformations.

UO3

Students will gain an understanding of eigenvalues, eigenvectors, and the process of diagonalizing matrices.

UO4

Students will be able to apply the Cayley-Hamilton theorem to find minimal polynomials and solve matrix-related problems.